
NATO/PFP UNCLASSIFIED

NATO/PFP UNCLASSIFIED

ALLIED
ORDNANCE
PUBLICATION

AOP-61
(Edition 1)

N
A

T
O

 IN
T

E
R

N
A

T
IO

N
A

L
 S

T
A

F
F

 –

D
E

F
E

N
C

E
 IN

V
E

S
T

M
E

N
T

 D
IV

IS
IO

N

NATO TECHNICAL SHAREABLE
SOFTWARE

PRODUCT DEVELOPMENT
STANDARDS AND GUIDELINES

AOP-61

OCTOBER 2011

NATO/PFP UNCLASSIFIED

AOP-61
(Edition 1)

NORTH ATLANTIC TREATY ORGANIZATION

NATO STANDARDIZATION AGENCY (NSA)

NATO LETTER OF PROMULGATION

24 October 2011

1. AOP-61, (Edition 1) - NATO TECHNICAL SHAREABLE SOFlWARE is a
NATO/PFP UNCLASSIFIED publication. The agreement of nations to use this
publication is recorded in STANAG 4683.

2. AOP-61, (Edition 1), is effective upon receipt.

3. AOP-61, (Edition 1). contains only practical information. Any corrections that
nations may make to it are not subject to ratification. The Custodian Group is
AC/225(LCG3-SG/2) and any correction or addition proposed for the AOP should be
addressed to members of that Group. Such amendments, if accepted by the
Custodian Group in plenary session, will be incorporated into the next version
of AOP-61.

NATO/PFP UNCLASSIFIED

NATO/PFP UNCLASSIFIED
AOP-61

(Edition 1)

NATO/PFP UNCLASSIFIED

RESERVATIONS

NATION SPECIFIC RESERVATIONS

NATO/PFP UNCLASSIFIED
AOP-61

(Edition 1)

RECORD OF CHANGES

Change date

Date entered

Effective date

By whom
entered

NATO/PFP UNCLASSIFIED
AOP-61
(Edition 1)

NATO/PFP UNCLASSIFIED

Table of Contents

1. INTRODUCTION.. 1

1.1 IDENTIFICATION .. 1
1.2 SCOPE.. 1
1.3 RATIONALE ... 1
1.4 REFERENCE DOCUMENTS .. 1

PART 1 – PRODUCT DEVELOPMENT STANDARDS.. 1

1. PRODUCT STANDARDS... 1

1.1 SUPPORTING STANAGS... 1
1.2 PRODUCT RELEASE ... 1

1.2.1 Contents ... 1
1.2.2 Schedule... 1
1.2.3 Media ... 1

1.3 CLASSIFICATION MARKINGS ... 1

2. PRODUCT DEVELOPMENT STANDARDS .. 1

2.1 REQUIREMENTS MANAGEMENT .. 1
2.2 SOFTWARE DEVELOPMENT STANDARDS ... 1
2.3 CONFIGURATION MANAGEMENT... 2

PART 2 – FORTRAN CODING AND STYLE GUIDELINES ... 1

1. PURPOSE... 1

1.1 REFERENCE DOCUMENTS .. 1
1.2 DOCUMENT STRUCTURE.. 1

2. APPLICATION.. 1

2.1 WAIVER APPROVALS... 2
2.2 BACKGROUND ... 2

3. RATIONLE FOR THIS CODING STANDARD .. 4

4. RULES AND CONVENTIONS .. 4

4.1 GENERAL (RATIONALE) .. 4
4.2 DOCUMENTATION (RATIONALE)... 4

4.2.1 Program Headers (Rationale) .. 4
4.2.2 Subroutine/Function/Module Headers (Rationale).. 5
4.2.3 Comments (Rationale) ... 5

4.3 FORMAT ISSUES... 6
4.3.1 Naming Conventions (Rationale)... 6
4.3.2 Capitalization (Rationale) ... 6
4.3.3 Blank Lines, White Space and Alignment (Rationale) ... 6
4.3.4 Order of Declarations (Rationale)... 7

4.4 STATEMENTS (RATIONALE) .. 7
4.5 TYPES (RATIONALE) ... 8
4.6 COMPLEXITY (RATIONALE) .. 8

5. RATIONALE FOR RULES AND CONVENTIONS.. 9

5.1 GENERAL... 9

NATO/PFP UNCLASSIFIED
AOP-61
(Edition 1)

NATO/PFP UNCLASSIFIED

5.2 DOCUMENTATION ... 10
5.2.1 Program Headers.. 10
5.2.2 Subprogram Headers .. 10
A.2.3 Comments ... 10

5.3 FORMAT ISSUES... 11
5.3.1 Naming Conventions ... 11
5.3.2 Capitalization.. 11
5.3.3 Blank Lines, White Space and Alignment.. 11
5.3.4 Order of Declarations ... 11

5.4 STATEMENTS... 11
5.5 TYPES.. 13
5.6 COMPLEXITY... 13

6. SAMPLE HEADERS... 14

6.1 SAMPLE PROGRAM HEADER.. 14
6.2 SAMPLE SUBROUTINE/FUNCTION HEADER.. 15
6.3 SAMPLE SUBROUTINE/FUNCTION TRAILER ... 15

7. HEADER TEMPLATES... 16

7.1 PROGRAM HEADER TEMPLATE.. 16
7.2 SUBROUTINE/FUNCTION/MODULE HEADER TEMPLATE .. 16
7.3 SUBROUTINE/FUNCTION/MODULE TRAILER TEMPLATE.. 16
7.4 FILE HEADER TEMPLATE.. 16

8. FORTRAN 90 REFERENCE MANUALS .. 17

NATO/PFP UNCLASSIFIED
AOP-61
(Edition 1)

NATO/PFP UNCLASSIFIED

1

1. Introduction

1.1 Identification
This document describes the NATO Technical Shareable Software (NTSS)
Product Standards (Part 1) and FORTRAN Coding and Style Guidelines (Part 2)
for NAAG AC/225 Land Capability Group 3 (LCG 3) Sub-Group 2 (SG/2).

1.2 Scope
This AOP applies to all software that is part of the NATO Technical Shareable
Software suite developed under STANAG 4683 (“NATO Technical Shareable
Software”) unless an exception has been explicitly authorized by SG/2.

1.3 Rationale
The NTSS is a collection of software products designed for applications dealing
with technical ballistics issues. These products will typically be used in a
laboratory or desktop office environment. NTSS products will generally be
developed by the member nations of SG/2 and shared according to STANAG
4683 (NTSS). To enable SG/2 to maintain the NTSS products and ensure the
each product is usable and maintainable, a minimal set of standards and
guidelines are required.

1.4 Reference Documents
(a) NATO STANAG 4683 (Edition 1) on a NATO Technical Shareable Software dated

29 January 2008

NATO/PFP UNCLASSIFIED
AOP-61
(Edition 1)

NATO/PFP UNCLASSIFIED

Part 1-1

Part 1 – Product Development Standards

1. Product Standards

1.1 Supporting STANAGS
Each NTSS software product will have one or more related STANAGs and shall
implement all or part of the STANAG.

1.2 Product Release

1.2.1 Contents

NTSS products shall contain at least the following artifacts:
• User Guide
• Source code
• Installation instructions
• Sample inputs and outputs
• Release Notes

1.2.2 Schedule

The product release schedule is determined by the nation that maintains the
product.

1.2.3 Media

Products shall be distributed on CD or DVD

1.3 Classification Markings
All artifacts in a product release shall be marked with the appropriate level of
classification: UNCLASSIFIED [U], NATO/PP UNCLASSIFIED [NPU] or NATO
RESTRICTED [NR].

2. Product Development Standards

2.1 Requirements Management

• New Change Requests shall be submitted to SG/2 for review and approval
• Problem Reports shall be communicated to the national SG/2 representative of

the nation that is maintaining the software
• The nation that is maintaining the product shall maintain a list of requirements

and problem reports

2.2 Software Development Standards

• Coding and style guidelines shall be applied to the software when possible.
See Part 2 for the FORTRAN Coding and Style Guidelines. A NTSS product
developed using a different language should amend this AOP with coding and
style guidelines for the language.

• The nation developing or maintaining the product shall conduct engineering
level testing

NATO/PFP UNCLASSIFIED
AOP-61
(Edition 1)

NATO/PFP UNCLASSIFIED

Part 1-2

2.3 Configuration Management
The nation maintaining the product shall keep the product under configuration
control and maintain a change history for the product

NATO/PFP UNCLASSIFIED
AOP-61
(Edition 1)

PPaarrtt 22--11

NATO/PFP UNCLASSIFIED

Part 2 – FORTRAN CODING AND STYLE GUIDELINES

1. Purpose
These guidelines apply to FORTRAN77 and FORTRAN90 code maintained and

developed as part AOP-61. It is not intended to address all issues in FORTRAN
coding. In the event of that applicable coding standard guidance cannot be found in
this document, refer to the ANSI and ISO standards listed in Section 1.1. In addition, it
is not intended as a FORTRAN90 tutorial. It is assumed the reader is familiar with the
language elements and capabilities.

1.1 Reference Documents
The following documents should be consulted when deciding which intrinsic functions
and procedures are to be used in the code:

• ANSI X3.198-1992 (F90)
• FORTRAN International Standard, ISO/IEC 1539-1:1991 (F90)

Compiler supplied language extensions which are not specified in the above references
shall not be permitted.

In addition, a partial list of FORTRAN90 programming reference manuals is given in
Annex D.

1.2 Document Structure
The structure of this document is as follows:

• 1.0 Purpose
• 2.0 Application
• 3.0 Rationale
• 4.0 Rules and Conventions
• 4.1 General
• 4.2 Documentation
• 4.3 Format Issues
• 4.4 Statements
• 4.5 Types
• 4.6 Complexity
• Annex A Rationale

2. Application

This document is intended to be strictly applied to new programs and associated
subroutines, functions and modules. Existing code will not necessarily be reworked to
meet all of the aspects of this coding guideline. In order to help decide how and when
guidelines should be retrofitted to existing code, each guide item is annotated with one
of the following terms:

NATO/PFP UNCLASSIFIED
AOP-61
(Edition 1)

PPaarrtt 22--22

NATO/PFP UNCLASSIFIED

Immediate Do immediately.

Opportunity
Do when the compilation unit is edited the next time. Such changes
are relatively small and should not affect, or be affected by existing
code in a significant way.

Rework
Do when the unit is being reworked. Changes have impact on the code
semantics and should be done as part of a rewrite of such a unit
(usually when more than 40% of the unit will be changed).

New Code

This item applies only to new code. There is no applicability to existing
code, possibly because existing code has no occurrences of the
construct/issue in question or it is thought that it is not reasonable to
retrofit the guide item.

2.1 Waiver Approvals
Every time a rule in this standard is broken, approval for the deviation must be

documented. Depending upon the nature of the deviation, differing approvals are
required. The approval level needed for a deviation from a rule is documented in the
"Waiver" column on each table. The following Waiver authorizations are used.

Peer
Review

The Peer Reviewer accepts the deviation from the standard and verifies
that the documentation in the code explains the rationale for the deviation.
No further levels of approval are necessary.

Authority
The Project Authority accepts the documented deviation, with the peer
reviewer's concurrence, from the standard.

2.2 Background
1FORTRAN was invented by a team of programmers working for IBM in the

early nineteen-fifties. This group, led by John Backus, produced the first compiler, for
an IBM 704 computer, in 1957. They used the name FORTRAN because one of their
principal aims was ``formula translation''. But FORTRAN was in fact one of the very
first high-level language: it came complete with control structures and facilities for
input/output. FORTRAN became popular quite rapidly and compilers were soon
produced for other IBM machines. Before long other manufacturers were forced to
design FORTRAN compilers for their own hardware. By 1963 all the major
manufacturers had joined in and there were dozens of different FORTRAN compilers in
existence, many of them rather more powerful than the original.

All this resulted in a chaos of incompatible dialects. Some order was restored in
1966 when an American national standard was defined for FORTRAN. This was the
first time that a standard had ever been produced for a computer programming
language. Although it was very valuable, it hardly checked the growth of the language.
Quite deliberately the FORTRAN66 standard only specified a set of language features

1 from Professional Programmer's Guide to FORTRAN77; Clive G. Page, University of
Leicester, UK; 7th June 2005; Copyright © 1988 - 2005 Clive G. Page

NATO/PFP UNCLASSIFIED
AOP-61
(Edition 1)

PPaarrtt 22--33

NATO/PFP UNCLASSIFIED

which had to be present: it did not prevent other features being added. As time went
on these extensions proliferated and the need for a further standardization exercise
became apparent. This eventually resulted in the current version of the language:
FORTRAN77.

FORTRAN77 was produced in 1977 by a committee of the American National
Standards Institute (ANSI) and was subsequently adopted by the International
Standards Organization (ISO). The definition was published as ANSI X3.9-1978 and
ISO 1539-1980.

When the latest FORTRAN Standard was issued in 1977 there was fairly

widespread disappointment that it did not go just a little further in eliminating some of
the tiresome restrictions that had persisted since the early days. The US Department
of Defense issued a short list of extensions which manufacturers were encouraged to
add to their FORTRAN77 systems. The most important of these were the following:

• the END DO statement
• the DO WHILE loop
• the INCLUDE statement
• the IMPLICIT NONE facility
• intrinsic functions for bit-wise operations on integers.

One of the most irksome restrictions of FORTRAN77 is that symbolic names cannot

be more than six characters long. This forces programmers to devise all manner of
contractions, abbreviations, and acronyms in place of meaningful symbolic names.

2FORTRAN 90 (F90) is a recent update of the FORTRAN programming language.

FORTRAN 90 introduces several new features over its predecessor, FORTRAN77
(F77), including allocatable arrays, modules, and new statements. For more
information about FORTRAN 90 can see the following tutorials:

• FORTRAN90 for the FORTRAN77 Programmer
• FORTRAN90 Tutorial at NASA/Ames

F90 is totally backwards-compatible with F77. Older code (a.k.a. "legacy code")

which adheres to the F77 standard should compile and run under F90 without
problems.

In recent years there have also been further updates to FORTRAN, namely
FORTRAN 95 (F95), and FORTRAN 2000 (F2K). These new FORTRAN versions
include the new language features which are present in F90, but generally do not

2 from the Harvard University Atmospheric Chemistry Modeling Group web site
http://www-as.harvard.edu/chemistry/trop/geos/documentation/geos_chem_style.html, GEOS–CHEM

Style Guide, dated May 27, 2004

http://www.nsc.liu.se/%7Eboein/f77to90/f77to90.html
http://www.nas.nasa.gov/Groups/SciCon/Tutorials/FORTRAN90/
http://www-as.harvard.edu/chemistry/trop/geos/documentation/geos_chem_style.html

NATO/PFP UNCLASSIFIED
AOP-61
(Edition 1)

PPaarrtt 22--44

NATO/PFP UNCLASSIFIED

include the old, obsolete features found in F77. Therefore, pure F77 code may not
always compile in F95 and F2K.

3. Rationale for this Coding Standard
The goal of this standard is to provide the framework in which a multi-site

development of code occurs. Readability, maintainability, correctness, testability and
the use of common programming paradigms are the overriding goals of this standard.
This is essential in providing consistent, maintainable code within an organization.
The goals of readability and understandability take an even more stringent form when
coupled with the fact that many of the developers and maintainers may not be native
English speakers; and acronyms, short forms, and idioms are very challenging.

4. Rules and Conventions

4.1 General (Rationale)

ID Rule
When

Retrofitted
Waiver

4.1-1
Every time a rule is broken, the rationale for the
deviation shall be documented.

N/A
Peer

Review

4.1-2
The length of a line of source code shall not exceed
96 characters, including trailing comments.

Rework Authority

4.1-3
All new programs shall conform to the FORTRAN 90
standards.

New Code Authority

4.1-4
All new programs shall be written in free format with a
minimum number of labels. Exceptions are labels for
DO loops and IF constructs.

New Code Authority

4.1-5

New subprograms written for legacy code shall be
written in the same format as the legacy code (fixed or
free). If legacy code is both fixed and free format, the
new code shall be in free format.

New Code Authority

4.2 Documentation (Rationale)

4.2.1 Program Headers (Rationale)

4.2.1-1

Every FORTRAN source code main program shall
have a completed program header block of the
format defined in Annex B.1 (a blank template is
provided in Annex C.1).

Opportunity Authority

4.2.1-2
The program header shall contain the name of the
program, which shall NOT be MAIN.

Opportunity Authority

NATO/PFP UNCLASSIFIED
AOP-61
(Edition 1)

PPaarrtt 22--55

NATO/PFP UNCLASSIFIED

4.2.2 Subroutine/Function/Module Headers (Rationale)

4.2.2-1

Every FORTRAN source code subroutine, function
and module shall have a completed program
header block of the format defined in Annex B.2 (a
blank template is provided in Annex C.2).

Opportunity Authority

4.2.3 Comments (Rationale)

4.2.3-1

The comment character "!" shall be used for
comment lines and trailing comments (required for
free format). One space shall be inserted between
the comment character and the comment text.

Rework
Peer

Review

4.2.3-2

Comments should provide useful information that
clarifies or enhances the code. If a section of
source code requires continual line by-line
comments, and cannot be followed without these
comments, the code itself should be re-evaluated
to determine if its base level of clarity is sufficient.

Rework
Peer

Review

4.2.3-3

Comments shall have beginning and ending
demarcations consisting of:
!---

for minor blocks of code and:

!***

for major blocks of code.

Rework
Peer

Review

4.2.3-4

All comments shall be indented at the same level
as the code to which they apply. Starting at one
column less than the level separates the comment
from the code and preserves the structure.

Rework
Peer

Review

4.2.3-5

Use trailing comments when they provide
additional clarity. Possible uses of trailing
comments are to show the units of variables, or to
comment the call to a subprogram.
Attempt to align trailing comments at the end of
lines where lines are close together.

Rework
Peer

Review

4.2.3-6

Comments that refer to compilation bug fixes
and/or workarounds shall include the vendor
name and the release number(s) of the
compiler.

Opportunity
Peer

Review

NATO/PFP UNCLASSIFIED
AOP-61
(Edition 1)

PPaarrtt 22--66

NATO/PFP UNCLASSIFIED

4.3 Format Issues

4.3.1 Naming Conventions (Rationale)

4.3.1-1

All types, variables, subprograms, etc., shall be
named using meaningful identifiers, such as full
names/words, with a description that relates to the
item so that a reader will recognize its use. Multi-
word identifiers shall use an underscore to
separate words (e.g. Wpn_System). Use
approved abbreviations and acronyms.

Rework
Peer

Review

4.3.1-2
FORTRAN keywords and intrinsic function names
shall NOT be used as identifiers.

Immediate Authority

4.3.2 Capitalization (Rationale)

4.3.2-1
All reserved words (e.g. in, out, call, read, write)
shall appear in lower case.

Opportunity
Peer

Review

4.3.2-2
All pre-defined FORTRAN identifiers (e.g. Integer*2,
Real*8, Character) shall appear in mixed case.

Opportunity
Peer

Review

4.3.2-3

All other names shall have the initial and first letter
after each underscore capitalized, as in:
Character Fuze_Model
Real*8 Fuze_Setting

Opportunity
Peer

Review

4.3.2-4
Acronyms shall appear in upper case (e.g.,
ASCII_Filename).

Opportunity
Peer

Review

4.3.3 Blank Lines, White Space and Alignment (Rationale)

4.3.3-1
Use blank lines, white spaces and code alignment
to enhance the readability of the code

Opportunity
Peer

Review

4.3.3-2
Three blank spaces shall be used as the basic unit
of indentation for continuation lines.

Rework
Peer

Review

4.3.3-3
Indent inside each control structure (e.g., do, if-
then-else, case). An indentation level shall consist
of three blank spaces.

Rework
Peer

Review

4.3.3-4
Blank spaces shall always be used instead of tabs
in source files.

Rework
Peer

Review

4.3.3-5 Use spacing around operators (=, +, -, *, and /). Rework
Peer

Review

4.3.3-6
Use spacing between subroutine/function names
and the opening parenthesis. This includes
FORTRAN intrinsic subprograms.

Rework
Peer

Review

4.3.3-7
DO NOT use spacing between array names and the
opening parenthesis.

Rework
Peer

Review

NATO/PFP UNCLASSIFIED
AOP-61
(Edition 1)

PPaarrtt 22--77

NATO/PFP UNCLASSIFIED

4.3.4 Order of Declarations (Rationale)

4.3.4-1

The order of information conforms to FORTRAN
requirements :

• Compiler options
• Program/subroutine/function/module name
• Header
• "Use" statements in alphabetical order
• "Include" statements in alphabetical order
• Passed variable types
• Local parameters in alphabetical order
• Local types in alphabetical order
• Variables grouped by type and in alphabetical

order

Opportunity
Peer

Review

4.4 Statements (Rationale)

4.4-1

Avoid the use of go to statements whenever
possible. The go to statement shall only be
used to transfer to: an error processing block; a
program end; a subprogram end; or to make a
conditional exit from a do loop or if block.

Rework
Peer

Review

4.4-2
Use the do-end do form of the do loop. Use a
label if the loop extends over a large number of
lines.

Rework
Peer

Review

4.4-3

Use "do" loops over a static range whenever
possible. Use "do" loops over dynamic ranges as a
second choice and, as a 3rd choice, use do while
loops.

Rework
Peer

Review

4.4-4
Terminate a do loop with a continue statement if
it is not the do-end do format. Do not terminate
a do loop with an executable statement

Opportunity
Peer

Review

4.4-5
Do not use language features which are
obsolete, e.g., ENCODE, DECODE, Hollerith (in
any form), arithmetic IF, etc.

Rework Authority

4.9-6

Use & as the continuation character in column 6 (for
fixed format). This is the "official" F90 continuation
character. It may also be used at the end of the
code line in free format.

Rework
Peer

Review

4.4-7

All end statements for programs, subroutines,
functions and derived types shall include the routine
type (program, subroutine, function)and/or defining
name.

Opportunity
Peer

Review

NATO/PFP UNCLASSIFIED
AOP-61
(Edition 1)

PPaarrtt 22--88

NATO/PFP UNCLASSIFIED

4.4-8
Minimize the number of return statements in a
subprogram.

Rework
Peer

Review

4.4-9
DO NOT use assign and assigned go to
statements.

Rework
Peer

Review

4.4-10
Use the select case construct to select from a
list of choices, instead of the if-then-else
construct.

Rework
Peer

Review

4.4-11 Numeric labels shall be monotonically increasing Rework Authority

4.4-12
Multiple statements shall NOT be used on a line
of code.

Rework Authority

4.4-13
Composite keywords (end do, end if...) shall
contain the blank character separator.

Rework Authority

4.5 Types (Rationale)

4.5-1 The compiler directive Implicit NONE shall be used. New Code Authority

4.5-2

Use the initialization format for all variable type and
constant definitions, e.g.,
Logical :: End_Header = .FALSE. and
Integer*2, parameter :: Aero_Cnt = 11,
Array_Max = 20

New Code
Peer

Review

4.5-3

Multi-indexed arrays should be dimensioned the
same way the compiler will store the values, i.e., the
inner (leftmost) index varies the fastest. An example:
if storing 100 locations as latitude, longitude, altitude;
dimension Position(3, 100).

New Code Peer Review

4.5-4
Use the D exponent when assigning a constant value
to a REAL*8 number.

Opportunity
Peer

Review

4.5-5
The underscore form for exponents shall not be used
when assigning a constant value, e.g., -1.83_4. Use
-1.83D4; -1.83D04; -1.83E4; -1.83E04

Opportunity Authority

4.6 Complexity (Rationale)

4.6-1
Parentheses shall be used to clarify complex
precedence and to enhance readability.

Rework
Peer

Review

4.6-2

Constructs and names that rely on the use of
negatives should not be used.
 Use:
 if (Operator_Missing) then
 rather than:
 if (.not.Operator_Found) then

Rework
Peer

Review

4.6-3
All subprogram passed parameters should have
their intent (in, inout, out) declared.

Rework Peer Review

NATO/PFP UNCLASSIFIED
AOP-61
(Edition 1)

PPaarrtt 22--99

NATO/PFP UNCLASSIFIED

4.6-4
All output parameters should be initialized as soon
as possible and in any case always before an
explicit return could be encountered.

Opportunity Peer Review

4.6-5
Passed parameters shall not exceed 10 for any
subprogram.

New Code Peer Review

4.6-6

Input data required for or data output from a
subprogram or module shall preferably be passed
through the calling sequence instead of common
blocks.

New Code Peer Review

5. Rationale for Rules and Conventions

• 5.1 General
• 5.2 Documentation
• 5.3 Format Issues
• 5.4 Statements
• 5.5 Types
• 5.6 Complexity
•

5.1 General

5.1-1 (4.1-1) This rule provides the flexibility to deviate from the coding standard when
necessary but requires that the rationale for the deviation be documented. This
deviation is then highly visible for peer review and long term maintenance.

The general philosophy is that the code itself must be self-documenting.
Comments should augment code where necessary but should be created in the
knowledge that comments and header comments are often not maintained to the same
standard as the code and often get out-of-date, creating confusion for readers later in
the maintenance cycle. Comments therefore should explain the intent of the code and
leave it to well-written code to provide the details.

5.1-2 (4.1-2) This rule provides for increased readability of source code in both online
and printed formats and reflects the minimum level of support which is easily available
to users. In addition, there are human limitations in the width of the field of view for
understanding at the level required for reading source code. Although other
documents recommend 70-80 columns, the increased screen capability and tradeoff
with representative naming suggests a larger width. The choice of 96 was decided as
a reasonable value that could be displayed on all modern displays.

5.1-3 (4.1-3) This rule provides for conformity to a stricter standard than the FORTRAN
77 standard while providing modern programming practices. It also provides backward
compatibility to FORTRAN 77 for legacy code.

NATO/PFP UNCLASSIFIED
AOP-61
(Edition 1)

PPaarrtt 22--1100

NATO/PFP UNCLASSIFIED

5.1-4 (4.1-4) This rule provides more coding space to accommodate meaningful names
and indentation practices.

5.1-5 (4.1-5) This rule provides compatibility with legacy code but allows the piecemeal
upgrade to the current standard.

5.2 Documentation

5.2.1 Program Headers

5.2.1-1 (4.2.1-1) - (4.2.1-2) Program headers are used to quickly gather pertinent
information about that program. The quick summary of the purpose, compilation
modules, I/O interfaces and change history are important for giving the succinct
overview that is often needed.

5.2.2 Subprogram Headers

5.2.2-1 (4.2.2-1) The subprogram headers are used to quickly gather pertinent
information about that subprogram. The quick summary of the purpose, passed
parameters, external modules used, processing and change history are important for
giving the succinct overview that is often needed.

A.2.3 Comments

5.2.3-1 (4.2.3-1) - (4.2.3-2), (4.2.3-5) Comments should be reserved for expressing
needed information which cannot be expressed in code and highlighting cases where
there are overriding reasons to violate one of the coding standard rules. The structure
and function of well-written code is clear without comments. Obscured or badly
structured code is hard to understand, maintain, or reuse regardless of comments. Bad
code should be improved, not explained.

An additional factor is that code and documentation should be oriented towards
maintainers who potentially may be less comfortable with the domain than the original
author. In addition, maintainers and reviewers may not be completely comfortable
working in English and may not be familiar with acronyms, idioms and contractions.
Needed information must be easy to understand.

5.2.3-2 (4.2.3-3) - (4.2.3-4) The formatting rules for comments are designed to make
comments visually distinct from the code. Standardizing this formatting provides
increased readability.

5.2.3-3 (4.2.3-6) This rule documents information that often proves to be extremely
useful in future maintenance releases of the software.

NATO/PFP UNCLASSIFIED
AOP-61
(Edition 1)

PPaarrtt 22--1111

NATO/PFP UNCLASSIFIED

5.3 Format Issues

5.3.1 Naming Conventions

5.3.1-1 (4.3.1-1) Standardization of naming with clear identifiable names is critical to
readability and maintainability.

5.3.2 Capitalization

5.3.2-1 (4.3.2-1) - (4.3.2-4) Standardized capitalization increases readability.

5.3.3 Blank Lines, White Space and Alignment

5.3.3-1 (4.3.3-1), (4.3.3-3) and (4.3.3-5) - (4.3.3-7) Blank lines help to group logically
related lines of text (AQ&S Section 2.1.6). White space between operators and
punctuation improves readability. Alignment of operators, declarations, parameter
modes, and parenthesis facilitates readability and understandability.

5.3.3-2 (4.3.3-2) Consistent spacing improves the readability of the code because it
gives a visual indicator of the program structure.

5.3.3-3 (4.3.3-4) Indenting with spaces is more portable than indenting with tabs
because tab characters are displayed differently by different terminals, editors, and
printers.

5.3.4 Order of Declarations

5.3.4-1 (4.3.4-1) These rules provides for a consistent ordering of items within a
program or subprogram. This makes declarative items easier to find, especially for
those not familiar with a given compilation unit.

5.4 Statements

5.4-1 (4.4-1) The go to is an unstructured change in the control flow. Worse, the label
does not require an indicator of where the corresponding go to destination(s) are
(hence the requirement (4.4-14) that all labels be monotonically increasing). The
exceptions are jumps to error blocks or the end of the program or subprogram, and exit
from a do loop or if construct where the next logical statement is not appropriate. An
example is a do loop search in which a drop through (the item was not found)
constitutes an error requiring additional processing.

NATO/PFP UNCLASSIFIED
AOP-61
(Edition 1)

PPaarrtt 22--1122

NATO/PFP UNCLASSIFIED

5.4-2 (4.4.2) Use of the do-end do form of the do loop reduces the necessity of line
labels. Loop names for do loops help readers of the source code find the associated
end for that loop.

5.4-3 (4.4-3) Do while loops are more difficult to analyze, to show termination, or to
optimize. The invariance of the do loop variable inside the loop prevents a number of
possible programming errors. Expressing the loop as a static range is preferable,
expressing it as a dynamic range in a do loop is next, followed by do while loops with
evaluations of simple expressions and while loops with complex expressions.

5.4-4 (4.4-4) This format produces a cleaner, more readable code by providing
blocking.

5.4-5 (4.4-5) FORTRAN 90 indicates these FORTRAN 77 features will be obsolete in
future versions of the language.

5.4-6 (4.4-6) The use of ‘&’ as the continuation character is useful in it's consistency for
fixed format and required in free format. The only exception is continuation lines which
exceed two or three lines, in which case (for fixed format) a numeric character in
column 6 is useful for sequencing the lines.

5.4-7 (4.4-7) The use of the routine type and name is especially useful for files
containing multiple subprograms that span more than one page (or screen).

5.4-8 (4.4-8) Excessive use of returns can make the code confusing and unreadable.
Too many returns from a subprogram may be an indicator of cluttered logic. However,
do not avoid return statements if it detracts from natural structure and code readability.

5.4-9 (4.4-9) The assigned and assigned go to statements are less readable, more
difficult to analyze and more prone to programming errors. In addition, FORTRAN 90
indicates this FORTRAN 77 feature is obsolete.

5.4-10 (4.4-10) This format is required for discrete variables that encompass all or
many of the allowable values and typically have different code paths for each value.

5.4-11 (4.4-11) Monotonically increasing numeric labels allows the maintainer to more
easily analyze and trace the code logic.

5.4-12 (4.4-12, 4.4-13) Enhances readability and reduces confusion.

NATO/PFP UNCLASSIFIED
AOP-61
(Edition 1)

PPaarrtt 22--1133

NATO/PFP UNCLASSIFIED

5.5 Types

5.5-1 (4.5-1) Implicit none shall be used in all program units. This ensures that all
variables must be explicitly declared, and hence documented. It also allows the
compiler to detect typographical errors in variable names.

5.5-2 (4.5-2) This format keeps the variable and constant name and value in one
declaration.

5.5-3 (4.5-3) Multi-indexed arrays with the fastest index as the innermost, allows
compiler optimization and faster execution times. In addition, this format keeps
common data together when displaying data using an interactive debugging tool.

5.5-4 (4.5-4) Use of the D exponent character insures that the accuracy of floating
point constants or initializations will not fall victim to the whims of compiler optimization.

5.5-5 (4.5-5) Use of the underscore form for exponentiation is prohibited because it is
easily mistyped as a minus or dash. (-) which can cause havoc in mathematical
expressions.

5.6 Complexity

5.6-1 (4.6-1) Parenthesis can be helpful in clarifying complex sub-expressions for
authors and subsequent readers, as well as ensuring that order of evaluation and the
precedence of terms are precisely understood by users of the code.

5.6-2 (4.6-2) Relational expressions are more readable and understandable when
stated in a positive form. As an aid in choosing the name, ensure that the most
frequently used branch in a conditional construct is encountered first. There are cases
in which the negative form is unavoidable. If the relational expression better reflects
larger structures in the code (larger than the condition statement under consideration),
then inverting the test to adhere to this guideline is not recommended , for example
when the positive choice is null, as in

if (.not. Found) then
 write (5, "(' Data in file ', A, ' does not exist')") Filename
 go to 9999
end if

is still better than
if (Found) then
 continue
else
 write (5, "(' Data in file ', A, ' does not exist')") Filename
 go to 9999
end if

NATO/PFP UNCLASSIFIED
AOP-61
(Edition 1)

PPaarrtt 22--1144

NATO/PFP UNCLASSIFIED

5.6-3 (4.6-3) The intent of parameters passed through a subprogram should be
declared to avoid inadvertent changes to variables intended to be for input only, or use
of output variable in internal processing.

5.6-4 (4.6-4) Although most FORTRAN compilers zero numeric variables and blank
character variables, there is no guarantee any particular compiler will, or will in the
future, do so. All output variables should be initialized at the beginning of the
subprogram to insure the return value(s) are set whether the routine completed
successfully or there was an error.

5.6-5 (4.6-5) Subprograms which require a large number of input parameters or
generate a large number of output values should create record types which can be
passed as a block and thus reduce the number and confusion in the calling sequence.

5.6-6 (4.6-6) Variables passed through common blocks are essentially invisible,
especially if the common block is inserted as an "include", and as such, can be
inadvertently changed affecting other routines.

6. Sample Headers

6.1 Sample Program Header

Program Conv_Aero
!***
! Name: Conv_Aero
! Purpose: To read the traditional aerodynamic database file and convert it to
! an XML formatted file.
!
! Modules: Conv_Aero.f90, xml_parser.lib
! I/O Units: 1 - Aerodynamic input file [86 column] (ex: 155.aero)
! 2 - Projectile family model (ex: M107)
! 3 - Output file (ex: 155.XML)
! 5 - Standard System input (Keyboard)
! 6 - Standard System output (Monitor)
! History: History See the end-of-file for the change
history!***
**

Note that the header contains the following:
• A description of the program, the original date and most recent modified date,

with the initials of who modified it last)
• A list of Logical Unit Numbers (LUN) and what they reference
• A list of module filenames used, including the main program filename
• History. Each time the file is modified the history should be updated.

NATO/PFP UNCLASSIFIED
AOP-61
(Edition 1)

PPaarrtt 22--1155

NATO/PFP UNCLASSIFIED

•

6.2 Sample Subroutine/Function Header

Subroutine FTPR (ILun, Format_Str, Data_Str)
!***
! Name: FTPR
! Purpose - Formats firing data output and prints it to unit ILun
! Parameters - ILun (In) : unit to which output is written;
! Format_Str (In) : format string containing the processing information;
! Data_Str (In) : string containing the encoded data.
!
! Sample Format - (A4,.10,A5,-L,+R,.S10)
!
! Process Commands - B: check for blanks in the field with the decimal point;
! A: no processing, just copy to the output;
! .: (decimal point) - eliminate the decimal point;
! -: use the next character ("L" in this case) as a minus;
! +: use the next character ("R" in this case) as a plus;
! _S: append the opposite sign of the data to the data output;
! .S: eliminate the decimal point and append the opposite
! sign of the data to the data output;
! Process Notes - Commas must separate formatting descriptors;
! An E or * (F format overflow indicator) will blank the field.
! The open parenthesis, "(", and close parenthesis ")" are the
! start/stop indicators and are required syntax.
!
! History: See the end-of-file for the change history
!***

Note that the header contains the following:
• A description of the routine, the original date and most recent modified date,

with the initials of who modified it last)
• A list of input and output arguments
• A list of references (if applicable)
• History. Each time the file is modified the history should be updated.

6.3 Sample Subroutine/Function Trailer

!---
! History:
! Version Date Modification
! ------- ---- ------------
! 0.1 29 Jun 2006 Initial. jeh
! 0.2 20 Aug 2006 Added XSL style sheet reference. jeh
!***

NATO/PFP UNCLASSIFIED
AOP-61
(Edition 1)

PPaarrtt 22--1166

NATO/PFP UNCLASSIFIED

7. Header Templates

7.1 Program Header Template

!***
! Name:
! Purpose:
!
! Modules:
!
! I/O Units: 1 -
!
! [Notes:]
!---
! History: See the end-of-file for the change history
!***

7.2 Subroutine/Function/Module Header Template

!***
! Name:
! Purpose:
! Parameters: X (In) :
! Y (In/Out) :
! Z (Out) :
!
! Processing:
!
! History: See the end-of-file for the change history
!***

7.3 Subroutine/Function/Module Trailer Template

!---
! History:
! Version Date Modification
! ------- ---- ------------
!
!
!***

7.4 File header template

!===
!
! ***** NATO RESTRICTED *****
!
! NATO ARMY ARMAMENTS GROUP, LAND CAPABILITY GROUP 3, SUB-GROUP 2
! TECHNICAL INFORMATION AND DATA
!
! Use and distribution of the enclosed information must conform to
! NATO STANAG 4683 "NATO Technical Shareable Software (NTSS)".
! The agreement defined in NATO STANAG 4683 is implemented when any or all
! of the enclosed information is incorporated into any software.
! ---

NATO/PFP UNCLASSIFIED
AOP-61
(Edition 1)

PPaarrtt 22--1177

NATO/PFP UNCLASSIFIED

8. FORTRAN 90 Reference Manuals

1. FORTRAN 90 - Meissner, PWS Kent, Boston, 1995, ISBN 0-534-93372-6.

2. FORTRAN 90 - Huddleston, Exchange Publ. Div., Buffalo, NY, 1996, ISBN 0-
945261-07-1.

3. FORTRAN 90 and Engineering Computation - Schick and Silverman, John Wiley,
1994, ISBN 0-471-58512-2.

4. FORTRAN 90 Concise Reference - Wagener, Absoft, 1998, ISBN 0-9670066-0-0.

5. FORTRAN 90 for Engineers - Etter, Benjamin/Cummings, Redwood City, 1995,
ISBN 0-201544-46-6.

6. FORTRAN 90 for Engineers and Scientists - Nyhoff and Leestma, Prentice Hall,
1996, ISBN 0-13-519729-5.

7. An “Introduction to....” also exists: 1996, ISBN 0-13-505215-7.

8. FORTRAN 90 for Scientists and Engineers - Brian D. Hahn, Edward Arnold, 1994,
ISBN 0-340-60034-9.

9. FORTRAN 90 Programming - Ellis, Philips, Lahey, Addison Wesley, Wokingham,
1994, ISBN 0-201-54446-6.

10. Problem solving with FORTRAN 90: for scientists and engineers - Brooks, 1997,
Springer, 0-387-98229-9.

11. Programmer’s Guide to FORTRAN 90, third edition - Brainerd, Goldberg and
Adams, Springer, 1996, ISBN 0-387-94570-9.

12. Programming in FORTRAN 90 - I.M. Smith, Wiley, ISBN 0471-94185-9.

13. Upgrading to FORTRAN 90 - Redwine, Springer-Verlag, New York, 1995, ISBN 0-
387-97995-6.

	RESERVATIONS
	1. Introduction
	1.1 Identification
	1.2 Scope
	1.3 Rationale
	1.4 Reference Documents

	1. Product Standards
	1.1 Supporting STANAGS
	1.2 Product Release
	1.2.1 Contents
	1.2.2 Schedule
	1.2.3 Media

	1.3 Classification Markings

	2. Product Development Standards
	2.1 Requirements Management
	2.2 Software Development Standards
	2.3 Configuration Management

	1. Purpose
	1.1 Reference Documents
	1.2 Document Structure

	2. Application
	2.1 Waiver Approvals
	2.2 Background

	3. Rationale for this Coding Standard
	4. Rules and Conventions
	4.1 General (Rationale)
	4.2 Documentation (Rationale)
	4.2.1 Program Headers (Rationale)
	4.2.2 Subroutine/Function/Module Headers (Rationale)
	4.2.3 Comments (Rationale)

	4.3 Format Issues
	4.3.1 Naming Conventions (Rationale)
	4.3.2 Capitalization (Rationale)
	4.3.3 Blank Lines, White Space and Alignment (Rationale)
	4.3.4 Order of Declarations (Rationale)

	4.4 Statements (Rationale)
	4.5 Types (Rationale)
	4.6 Complexity (Rationale)

	5. Rationale for Rules and Conventions
	5.1 General
	5.2 Documentation
	5.2.1 Program Headers
	5.2.2 Subprogram Headers
	A.2.3 Comments

	5.3 Format Issues
	5.3.1 Naming Conventions
	5.3.2 Capitalization
	5.3.3 Blank Lines, White Space and Alignment
	5.3.4 Order of Declarations

	5.4 Statements
	5.5 Types
	5.6 Complexity

	6. Sample Headers
	6.1 Sample Program Header
	6.2 Sample Subroutine/Function Header
	6.3 Sample Subroutine/Function Trailer

	7. Header Templates
	7.1 Program Header Template
	7.2 Subroutine/Function/Module Header Template
	7.3 Subroutine/Function/Module Trailer Template
	7.4 File header template

	8. FORTRAN 90 Reference Manuals

